Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005554

RESUMO

This paper deals with the practical application of Radar Cross Section (RCS) reduction technology using plasma. Although various plasma application technologies for RCS reduction have been studied, there are still many issues to be addressed for practical implementation. In order to achieve actual application, the discharge should be sustained regardless of the external environment of the aircraft. It is also important to investigate the actual plasma parameters to determine the expected RCS reduction effect. Building upon previous studies that optimized the electrodes for RCS reduction, this study fabricates a Dielectric Barrier Discharge (DBD) source suitable for dynamic environments and verifies the power consumption during one cycle of plasma generation. The obtained results are expected to contribute to the optimization of DBD electrodes for plasma RCS reduction.

2.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631659

RESUMO

In this study, the problems encountered in radar cross-section (RCS) measurement experiments utilizing a dielectric barrier discharge (DBD) plasma system are examined and an effective solution is proposed. A DBD plasma system generates heat due to the high bias voltage required for plasma generation. The thermal-induced structural deformation of the DBD structure caused by this high voltage and its impact on RCS measurements are analyzed. In addition, techniques for minimizing the thermal-induced deformation and compensation methods for addressing the minimized deformation are proposed. Furthermore, RCS measurements are conducted on two kinds of DBD structures using the proposed method to experimentally demonstrate the improved agreement between the simulation and measurement results. For both structures, the RCS experimental results are in very good agreement with the simulation results, which enables accurate plasma characterization. In conclusion, it can be expected that the proposed method can be used to provide more accurate RCS measurements on various DBD structures that generate high heat.

3.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960578

RESUMO

In this study, a method was experimentally verified for further reducing the radar cross-section (RCS) of a two-dimensional planar target by using a dielectric rim in a dielectric barrier discharge (DBD) plasma generator using a frequency selective surface (FSS) as an electrode. By designing the frequency selective surface such that the passbands of the radar signal match, it is possible to minimize the effect of the conductor electrode, in order to maximize the RCS reduction effect due to the plasma. By designing the FSS to be independent of the polarization, the effect of RCS reduction can be insensitive to the polarization of the incoming wave. Furthermore, by introducing a dielectric rim between the FSS electrode and the target, an additional RCS reduction effect is achieved. By fabricating the proposed plasma generator, an RCS reduction effect of up to 6.4 dB in X-band was experimentally verified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...